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The study of microorganisms that pervade each and every parof this planet has
encountered many challenges through time such as the discary of unknown organisms
and the understanding of how they interact with their envinement. The aim of this
review is to take the reader along the timeline and major miééones that led us to
modern metagenomics. This new and thriving area is likely toe an important contributor
to solve different problems. The transition from classicamicrobiology to modern
metagenomics studies has required the development of new lanches of knowledge and
specialization. Here, we will review how the availabilityf tnigh-throughput sequencing
technologies has transformed microbiology and bioinformiécs and how to tackle the
inherent computational challenges that arise from the DNA efjuencing revolution.
New computational methods are constantly developed to coéict, process, and extract
useful biological information from a variety of samples and¢omplex datasets, but
metagenomics needs the integration of several of these comytational methods. Despite
the level of specialization needed in bioinformatics, it ismportant that life-scientists have
a good understanding of it for a correct experimental desigrnwhich allows them to reveal
the information in a metagenome.

Keywords: metagenomics, bioinformatics, high-throughput seq
microbiology

uencing, taxonomy, functional genomics,

BRIEF HISTORY OF MICROBIAL COMMUNITIES STUDY

From various de nitions of microbial communities, the one gposed byBegon et al. (1986)
de nes it as the set of organisms (in this case, microorgasjscoexisting in the same space and
time. The study of microbial communities has changed frore trst report of microbes made by
Leeuwenhoek and their oral organisms in 16 l{ierbeek, 19%5to the characterization using
the current molecular techniques. Pioneer scientistdtt® isolate these “invisible” organisms,
and like Robert Koch, they started by using nutrients in acdsphase like potato slices or gelatine
to cultivate and isolate microorganisms in order to coundarisualize them. Ultimately, these
isolation techniques helped scientists to understand theoarganisms' physiologie8ievins and
Bronze, 201

Soon, the microscope became the principal tool to study migganisms and their interactions.
Development of practical staining techniques such as GramhlZNeelsen, and Schae er and
Fulton (Beveridge, 2001; Blevins and Bronze, }0gigni cantly improved the resolution of
microscopy technigues. Something evident to microbiologias that the number of observed
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microorganisms in a microscope did not correspond withrestriction-fragment length polymorphism (T-RFLP). However,
number of microorganism obtained in culture platestéley and in spite all these improvements, there were many other
Konopka, 198k Although the explanation to this observation observations in microbiology that remained unansweredc lik
was not evident at that time, the conclusion was that thehose related to the microorganisms' metabolic and ecoldgic
microorganisms need special conditions to grow, and based dnction. Characterization of certain functions in a pactiar
this, Winogradsky emulated environments for culture mediaenvironment was possible only after gene cloning from total
production that resembled native growing conditiorigldFall- DNA of a certain habitat and when its heterologous expressed
Ngai, 2003 Winogradsky's ideas and his contribution to product was associated with a given metabolic function (i.e.,
ecology revolutionized microbiology and gave birth to a newnitrogenases, cellulases, oxidoreductases, laccasgs, Téis
concept named “microbial ecology,” which refers to the stafly implied the development of gene expression techniques using
microorganisms and their environmental rolesdkert, 2013 other microorganisms as systems to test gene function and

For almost 300 years$-{gure 1), the study of microorganisms roles in the microbial community. In addition, a window
was based on morphology features, growth, and selection of opportunity was open to discover new genes, functions,
some biochemical pro lesoszak et al., 1984; Oliver et al., 1991and metabolic products with technological application, thereb
Colwell et al., 1996 These techniques provided an insight into giving birth to biotechnology. Products such as “terraginffeom
the microbial world, but nowadays, they provide only a lindite Streptomyces lividiangVang et al., 20Q0or genes related to
resolution for other applications. broad-spectrum antibiotics were cloned from soil-DNA libies

In the late 1970s, Carl Woese proposed the use dfGillespie etal., 2002vere achievements that set the foundation
ribosomal RNA genes as molecular markers for life classbcat to a new area named “metagenomics analysis,” which was
(Woese and Fox, 19).7This idea in conjunction with the later de ned as the theoretical collection of all genomesnfr
Sanger automated sequencinga(ger et al., 19Y7/method members in a microbial community from a speci ¢ environment
revolutionized the study and classi cation of microorgamis. (Handelsman et al., 19%8Even if these approaches led to
Some decades later, advances in molecular techniques wéhe discovery of new molecules and identi cation of new
applied to microbial diversity description and granted accesmicrobial communities members3jovannonietal., 1990more
to a “new uncultured world” of microbial communities. recently, some problems have been spotted. Cloning biases
Some of these techniques, which had a remarkable impadtylorgan et al., 201)) sampling biases, misidenti cation of
were the polymerase chain reaction (PCR), rRNA gene%lecorating enzymes” and incorrect promoter sites in gengme
cloning and sequencing, uorescenin situ hybridization and dispersion of genes involved in secondary metabolite
(FISH), denaturing gradient gel electrophoresis (DGGE angroduction (Keller and Zengler, 20Q4re some of the problems
TGGE), restriction-fragment length polymorphism, andtermal  found in metagenomics. Therefore, it is important to evakiat

FIGURE 1 | Metagenomics timeline and milestones.  Timeline showing advances in microbial communities studgefrom Leeuwenhoek to NGS Qttman et al.,
2012; Yarza et al., 2014.
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and correct these biases with statistical methods to hawdtarb sample. Simpson and Shannon—Wiener indices are used as

understanding of the species richness and know the di erencheterogeneity measurements and di er mainly in calculatain

between the expected and the observed microbial diversity.  the taxa abundance for the nal richness estimation. Simpson
index gives a higher weight to species with more frequency in
a sample, whereas Shannon—Wiener gives more weight to rare

CONCEPTS OF MICROBIAL DIVERSITY speciesrebs, 201}
AND SPECIES RICHNESS The development of molecular biology provided a new
vision of microbial ecology and allowed the study of highly
“Species diversity” is an attribute of any biological comntyni complex communities in a short period of time. However, the
(Krebs, 201)% but how we quantify it, is not trivial. The application of diversity estimators in metagenomics projées
simplest idea to describe and quantify a microbial communitybeen evaluated by some authors with divided ideas about thei
(e.g., a metagenome) is the species richness concept, whigsults.
refers to the number of species in a speci ed region. Another Some authors concluded that microbial diversity estimatio
idea that can be applied to metagenomics is the evennebased on molecular markers is possible and can be used
concept or di erential abundance proposed Bympson (1949) for comparison with some precautionssihring et al., 201p
The evenness measurement attempts to quantify the unequ@hey recommended the use of Simpson or Shannon-Wiener
representation in communities where there are few dominanestimators as the best descriptors for species richness lat hig
species and many species that are relatively uncommon. THisvel taxa in metagenomesigegeman et al., 2013; Chernov
could be tested against a hypothetical community in whicket al., 201x However, in nature, the microbial communities
all species are equally common. Therefore, when comparingave a large number of rare species that can be detected
two communities, if both have the same number of specieenly if an exhaustive sampling is performeddwell and
(equal species richness) but dierent abundances, then th€oddington, 1994; Kemp and Aller, 2004; Bonilla-Rosso et al.
consortia with the shortest di erence between the observedl a 2012. Therefore, the use of such estimators is unsuccessful
hypothetical distribution (even abundance) will be the morefor very complex microbial communities. This problem has
diverse. Hence, it should be considered that species rishnegenerated the creation of new diversity indexes for spebiats t
should not be the only parameter to de ne diversity. analyse statistically the behavior of the sample. For exantyge, t
In order to describe and compare communities in a better waytail statistic {) estimates the number of undiscovered species
there are other metrics that have been adapted to metageisomitom a rank abundance curve, giving a higher weight to the low
and that can complement the aforementioned. Alphg (s a abundant taxa and increasing the sensitivity of the analgsis
metric for local diversity of a community; opposite to it, weviea complex sampled (et al., 201).
Gamma (), which measures the total regional diversity that The use of diversity indexes is a better approach to
includes many communities, and nally Beta)(metric tells us quantify and compare microbial diversity among samples. Such
how di erent community samples are in an area, linking Alphacomparison should be done cautiously because it could be
and Gamma metricsq{rebs, 201 uninformative unless biases related to sampling and ceitést
In the Alpha diversity assessment, the accumulation of specispecies or OTU de nition are minimizedBonilla-Rosso et al.,
or Operational Taxonomic Units (OTUs) plots have been use®012.
to evaluate the sample e ciency and to correct sampling
problems. Although a species accumulation curve could present

an asymptotic trend after using a bigger sample size, thNEXT GENERATION SEQUENCING

maximum species number could not be reached. This is why aECHNOLOGIES TO EXPLORE

statistical approach has to be performed, i.e., rarefactionesy MICROBIAL COMMUNITIES

which are useful to estimate the real maximum species or OTUs

number observed in the sample and to compare samples witAs previously mentioned, Sanger sequencing technology had

di erent sizes Ganders, 1968; Heck et al., 1975; Colwell and great impact on the early stage of microbial community

Coddington, 199% studies. Nowadays, the sequencing yield and sequencehlengt
Another alternative to calculate species diversityhave changed a lot since Sanger sequendial¢ 1). Currently,

quantitatively is the use of statistical estimators. Ratéirly, Sanger sequencing can retrieve up to 96 sequences per run

non-parametric estimators have been used for microbialvith an average length of 650 bp, which might be enough

communities' studies. These estimators do not depend ofor phylogenetic marker analysis. However, low-cost platforms

the statistical behavior of the sample and can consider loknown as Next Generation Sequencing technologies (NGS) are

abundance species. On one hand, the simplest non-parametigapable of parallel sequencing millions of DNA molecules with

diversity estimator is the Simpson's indeR)( which is based dierent yields and sequence length3able 1 Logares et al.,

on the probability of assigning two independent individuals2012; Fichotand Norman, 2013; Glenn, 2014; Sanchez-Fodes

taken randomly from the community into the same speciesAbreu-Goodger, 201)having a positive impact in di erent areas.

(Simpson, 1949 On the other hand, Shannon-Wiener function  The rst of these technologies that revolutionized the

or Shannon-Weaver indek® (Shannon, 1948is an entropy genomics and metagenomics areas was the 454 sequencing

measurement that increases with the number of species in th@atform or “pyrosequencing.” The principle of this technolagy
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TABLE 1 | Direct comparison among sequencing technologies sui  table for DNA fragments are attached and distributed in a ow cell, where

metagenomics. the sequencing reaction occurs by adding a labeled nudieoti
Roche lonTorrent Ilumina PacBio When the labeled nucleotide is incorporated and its uoregce
454 PGM RSI2 molecule is excited by a laser, the signal is registered by the
machine. Afterwards, the uorophore molecule is removed and
Maximum read 1200 400 3000 50,000 the next nucleotide can be incorporated. DNA fragments can be
length (bp) sequenced from one or both sides giving single end or pair-end
Output per run (Gb) 1 2 1006 1 sequencing, respectively, with a maximum read length of 300
Ampli cation for Yes Yes Yes No base pairs per rea@énnett, 200yt The output of this technology

llbrary construction is currently the highest among the second generation secjngn

ggﬁgsb (USA $9538.46  $460.00 $29.30 $600 technologies and makes it suitable for multiplexing hundrefls
Error kind Indel Indel Substitution Indel samples'[‘able 1;G|enn’ 201%. .
Error rate (%) 1 L 01 13 Currently, the technologies lalready mentioned are the
) most used for metagenome projects, but the development of
Run time 2on 73n 6 days 2n sequencing was kept going for the last 5 years in order to solve
Adapted from Glenn, T. 2014 NGS Field Guide—Table 2a—Run time, Read¥ieldThe ~ the known biases of these technologies and to o er a better
Molecular Ecologist. Available online af: _ trade-o between yield, cost, and read length. At present,sbe
ggzégw.molecuIarecoIoglst.com/next-gen- eldguide-2014/ (Accessed Aug 17, called third generation Sequencing technologies such aBiPa
ap6-C4 chemistry. RS from Paci ¢ Bioscience~(chot and Norman, 200)3or the
bMiSeq read length. Oxford Nanopore Kasianowicz et al., 19p6which are single-
“lllumina HiSeq 2500 Dual owcell yield. molecule, real-time technologies, reduced the ampli catidas

and also the short read length problem. The time and cost

a one-by-one nucleotide addition cycle, where the pyrophosphareduction o ered by these technologies is also a valuable.asse
(PPi) released from the DNA polymerization reaction isHowever, the error rate is higher compared to other technigeg
transformed in a luminous signal. The light emission fromatpl but correctable if the sequencing depth is high enough. Imger
with millions of microwells containing a given DNA fragment of computational tools, there is virtually no software thande
is detected by the machine and is translated to nucleotidased for metagenomics analysis.
sequences with an associated base quality vallergUlies One of the great improvements of second and third generation
et al., 200k This technology o ered a higher yield than Sangersequencing technologies is that the library preparation duess
sequencing at a lower cost but with shorter read lengiable ).  require DNA cloning vectors or bacterial hosts, simplifyirfget
The main bias of this technology is arti cial insertions and library preparation and reducing DNA contamination from othe
deletions due to long homopolymeric regions. In spite of theorganisms that are not part of the metagenome.
advantages that this technology provided to metagenontics, i  Although new generation sequencing technologies are
now obsolete. Recent announcements by Roche (current ownpowerful and have allowed us to discover novel microbial
of the technology) reported the shutdown of 454 divisionsieg  worlds and explore new environments, they present particular
the platform support by mid-2016<@arow, 2013 Nevertheless, limitations and biases that have to be circumventd@dble 1).
all the software that has been developed so far to analyse #b4 di is important to consider that data obtained from second
could be adapted to analyse data obtained by another plattorm®or third generation sequencing technologies have certain

The lon Torrent platform is an analogous technology to 454computational requirements for their analysis. The bigdes t
that produces a similar yield and a read length to those oletéin dataset generated, the higher computational resources amd m
at its middle stage of development. The lon Torrent PGM iscomplex bioinformatics analyses are necessary. In additioge
considered as the smallest potentiometer that exists and calata storage is needed to archive and process the datz(es
detect the change in hydrogen potential generated each timeedal., 201). In terms of bioinformatic analysis, not only high-end
proton is released after a nucleotide is added in the sequgnci servers are required but also UNIX operative system skills are
reaction occurring in millions of microwellsRothberg et al., needed. Programming and scripting knowledge are desirable t
201). The maximum lon Torrent yield is 500 million reads run and install the available metagenomics software foripgrs
with a mode length of 400 bpTable 1) (Glenn, 2013 In this  and interpreting the results. Thus, it is suggested that lyjisis
case, there is a clear bene t in terms of cost reduction,esion  or biological scientists should develop basic computatiskils
Torrent sequencing is just a tenth of the pyrosequencing cosh order to take an advantage of metagenomic data.
(Whiteley et al., 2012 .

However, read length reduction in return for higher yields Quality Control (QC) Procedures for
and error-rates is another trade-o observed in some platier Metagenomics
in order to reduce the sequencing costs, i.e., the case of tlessessing the output quality from any of the previously
Illumina technology, which has become one of the most populamentioned sequencing technologies will be always a crataal
technologies due to its low cost and high yield. The basis dfefore starting any analysis. Each sequencing platform pigsen
lllumina chemistry is the reversible-termination sequimgcby a particular bias product of the intrinsic mechanism to detect
synthesis with uorescently labeled nucleotides. In a hets  each nucleotide, which conforms the DNA polymer that is being
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analyzed Table 1). The error rate from each technology varies,community based on one gene or marker (i.e., 16S rRNA gene)
a ecting the characterization of a microbial community.((o  for taxonomy or phylogenetic purposes.

et al., 201 Filtering low quality reads considerably improves Metapro ling has been widely used due to its convenience to
metagenome analyses such as taxonomical classication aperform taxonomic and phylogenetic classi cation in large and
a and b diversity calculation Bokulich et al., 2013 There complex samples within organisms from di erent life domains.
are several programs that can be used for sequencing re&daddition, it could be performed using almost all mentioned
QC analysis as described ifable 1 In general, they provide sequencing technologiesable 1).

information about the sequencing output (number or reads, Moneywise, metapro ling is currently the best option for
length, GC content, overrepresented sequences, etc.) and so16S rRNA amplicon library preparation and sequencing by
of them include tools to modify the reads (adapter removalplatforms such as the lllumina MiSeq or the lon Torrent PGM.
quality ltering or trimming). These QC operations need an These benchtop sequencers allow microbial ecologists forper
interpretation depending on the analysis. For example, a G@diversity studies at their labs, using multiple replicates and
content analysis can be used to anticipate the presence sémples from longitudinal time studies. Previous comparisons
organisms with di erent GC content, but a single GC distritarti  between HiSeq 2000 and MiSeq technologies have shown that
does not imply that our sample has very low diversity, just alespite the yield di erence between thermr 30 Gb per day
bias toward the GC content of the most abundant organismsagainst 5 Gb), the number of OTUs obtained are not signi dgnt
Removal of low quality bases or entire reads can be benerial idi erent on using both the technologieC@poraso et al., 2012;
terms of mapping, but for metagenome assembly (or any otheruo et al., 201Q

genome assembly), none of the current assembly programs use o The advantages of amplicon sequencing are contrasted by the
interpret base quality within the assembly process. For lihan bias generated from using only one phylogenetic marker ssch a
sequencing, removal of optical or PCR duplicates can inctbase the 16S ribosomal gene or a variable region from it. Someef th
quality of abundance analysis from whole metagenome shmotgupitfalls are low resolution at the species levietifosino et al.,
DNA sequencing. However, this QC control has no sense &009; Nalbantoglu et al., 2014 range in gene copy number
all in amplicon sequence analysis. Therefore, there are sontemany speciesAcinas et al., 2004 horizontal transfer of 16S
compulsory QC processes that need to be performed befor&NA genes$chouls etal., 2003; Bodilis et al., 2Qand the fact
analysing our data, but depending on the approach, we have tbat <0.1% of the total genome are ribosomal genes, hindering

design speci ¢ QC steps to improve our results. the ampli cation of this marker from very low abundant genomes
in a sample.
The ribosomal genes as phylogenetic markers have been used
RECONSTRUCTING THE GENOMIC for the last 40 years or so, resulting in a wide representatfahis
CONTENT OF THE MICROBIAL marker in many databases, allowing the taxonomic annotedio
COMMUNITY FROM NGS DATA almost any microorganisms present in a metagenomic sample.

Some database examples are GreengéneSgntis et al., 206

The main questions to answer in microbial ecology are “Who ighe Ribosomal Database Projegt/¢ng et al., 2007 and Silva

out there?” and “What are they doing?” In fact, metagenomicéQuast et al., 203 The latter includes a great catalog of
can answer both questions. Particularly, microbial diitgrsan ~ €ukaryotic LSU sequences and is convenient to analyse @ungi
be determined using two di erent approaches: (1) Ampnconother.metazoan microorganisms. Hoyvever, amplicon-dependen
sequencing or (2) Shotgun metagenomics. In the rst approacHechniques are prone to sequencing errors, such as result
speci ¢ regions of DNA from communities are ampli ed using d|_screpan_cy from using di erent ribosomal variable regions,
taxonomical informative primer targets such as 16S rRNA genfimers bias, and OTU assignment errorsok et al., 1992;

for prokaryotes and intergenic transcribed spacers (ITS)her t -09ares etal., 2012; Poretsky etal., 3014 ,

large ribosomal subunit (LSU) gene for eukaryot&sdrpton, Most of the earher_ampllcon analysis programs were designed
2014: Tonge et al., 20L4in the second approach, shotgun for Sanger or 454 ribosomal pyrotag sequences. For example,
metagenomics can help to reconstruct large fragments on evé/othur (Schioss et al., 20§9QIIME (Caporaso et al., 20),0
complete genomes from organisms in a community withoutMEGAN (Huson and Weber, 20)3and CARMA (rause etal.,
previous isolation, allowing the characterization of a targ 2009 are some of the legacy software still available. Nowadays,

number of coding and non-coding sequences that can be usdhe software development for metagenomics considers short

as phylogenetic markers. sequences like lllumina reads or very long sequences such as
PacBio readsTable 2.
Once the species level taxonomic annotation objective is
Amplicon Sequencing Analysis covered, metagenome projects can focus on the functional

First of all, the term “metagenomics” should not be used tanformation mining. This could be achieved from the
refer amplicon sequence analysis, as this analysis is basedtaronomical information by extrapolating the functional
just one gene instead of the collection of all the genes in thannotation of related reference genomes (Filippo et al., 201)2
available genomes from all the organisms in a sample. A bettdio our knowledge, PICRUSL &ngille et al., 20)3is the only
term proposed is “metapro ling,” and it should be interpreted in available software that connects the taxonomic classocati
the rest of this text as the study of all members in a microbiafrom metapro ling results with metabolic informationTable 2).
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TABLE 2 | Examples of software used in metagenomic and metapro lin g analysis.
Software Application References Link (website)
FastQC Quality control tool for high-throughput sequence Andrews, 2015 http://www.bioinformatics.

Fastx-Toolkit

PRINTSEQ

NGS QC Toolkit

Meta-QC-Chain

Mothur

QIIME

MEGAN

CARMA

PICRUSt

Parallel-meta

MOCAT

TETRA

PhylophytiaS

MetaclusterTA

MaxBin

Amphora and Amphora2

BWA

Bowtie

Genometa

SORT-ltems

data using modular options and giving graphic
results of quality per base sequence, GC content, N
numbers, duplication, and over represent

Command line tools for Short-reads quality @antrol.
These allow processing, cutting, format conversion,
and collapsing by sequence length and identity

Quality control tool for sequence trimming based in
dinucleotide occurrence and sequence duplication
(mainly 8739
Tool for quality control analysis performed iparallel
environment

Parallel environment tool for quality conit. This
performs a mapping against 18S rRNA databases
for removing eukaryotic contaminant sequences

From reads quality analysis to taxonomic

classi cation, calculus of diversity estimators and
ribosomal gene metapro ling comparison

Quality pre-treatment of raw reads, taxonomic
annotation, calculus of diversity estimators, and
comparison of metapro ling or metagenomic data

Taxonomy and functional analysis of metagenomic
reads. It based on BLAST output of short reads and
performs comparative metagenomics. Graphical
interface

Phylogenetic classi cation of reads based on Pfam
conserved domains

Predictor of metabolic potential from taxonomic
information obtained of 16S rRNA metapro ling
projects

Taxonomic annotation of ribosomal gene maeks
sequences obtained by metapro ling or
metagenomic reads. Functional annotation based
on BLAST best hits results. Comparative
metagenomics

Pipeline that includes quality treatment of
metagenomic reads, taxonomic annotation based
on single copy marker genes classi cation, and
gene-coding prediction

Taxonomic classi cation by comparison of
tetranucleotide patterns. Web service available
Composition-based classi er of sequences basd
on reference genomes signatures

Taxonomic annotation based on binning of reis
and contigs. Dependent of reference genomes
Unsupervised binning of metagenomic short reads
and contigs

Metagenomic phylotyping by single cop
phylogenetic marker genes classi cation
Algorithm for mapping short-low-divergent
sequences to large references. Based on
Burrows—Wheeler transform

Fast short read aligner to long reference sequences
based on Burrows—Wheeler transform

Taxonomic and functional annotation of short-reds
metagenomic data. Graphical interface
Taxonomic annotation by alignment-based
orthology of metagenomic reads

NP

Schmieder and Edwards, 2011

Patel and Jain, 2012

Zhou et al., 2014

Schloss et al., 2009

Caporaso et al., 2010

Huson and Weber, 2013

Krause et al., 2008

Langille et al., 2013

Su et al., 2014

Kultima et al., 2012

Teeling et al., 2004

McHardy et al., 2007

Wang et al., 2014

Wu et al., 2014

Wu and Eisen, 2008; Wu and Scott, 2012

Li and Durbin, 2009

Langmead and Salzberg, 2012

Davenport and Tummler, 2013

Monzoorul Haque et al., 2009

babraham.ac.uk/projects/fastqc/

http://hannonlab.cshl.edu/fastx_
toolkit/index.html

http://prinseq.sourceforge.net/

http://www.nipgr.res.in/
ngsqctoolkit.html

http://www.
computationalbioenergy.org/qc-
chain.html

http://www.mothur.org/

http://giime.org/

http://ab.inf.uni-tuebingen.de/
software/megan5/

http://omictools.com/carma-
s1021.html

http://picrust.github.io/picrust/

http://www.
computationalbioenergy.org/
parallel-meta.html

http://vm-lux.embl.de/Zkultima/
MOCAT2/index.html

http://omictools.com/tetra-
51030.html

http://omictools.com/
phylopythia-s1455.html

http://i.cs.hku.hk/Zalse/
MetaCluster/

http://sourceforge.net/projects/
maxbin/

http://pitgroup.org/amphoranet/

http://bio-bwa.sourceforge.net/

http://bowtie-bio.sourceforge.
net/index.shtml
http://genomics1.mh-hannover.
de/genometa/
http://metagenomics.atc.tcs.
com/binning/SOrt-ITEMS

(Continued)
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TABLE 2 | Continued

Software Application References Link (website)
DiScRIBInATE Taxonomic assignment by BLASTx best hits Ghosh et al., 2010 http://metagenomics.atc.tcs.
classi cation of reads com/binning/DiScRIBINATE/
IDBA-UD Assemblerde novo of metagenomic sequences Peng et al., 2012 http://i.cs.hku.hk/Zalse/hkubrg/
with uneven depth projects/idba_ud/
MetaVelvet De novo assembler of metagenomic short reads Namiki et al., 2012 http://metavelvet.dna.bio.keio.
ac.jp/
Ray Meta Assembler ofde novo of metagenomic reads and Boisvert et al., 2012 http://denovoassembler.
taxonomy pro ler by Ray Communities sourceforge.net/
MetaGeneMark Gene coding sequences predictor from Zhu et al., 2010 http://exon.gatech.edu/index.
metagenomic sequences by heuristic model html
GlimmerMG Gene coding sequences predictor from Kelley et al., 2012 http://www.cbcb.umd.edu/
metagenomic sequences by unsupervised software/glimmer-mg/
clustering
FragGeneScan Gene coding sequences predictor from short e&ls Rho et al., 2010 http://sourceforge.net/projects/
fraggenescan/
CD-HIT Clustering and comparing sequences of nucleotides Li and Godzik, 2006 http://weizhongli-lab.org/cd- hit/
or protein
HMMER3 Hidden Markov models applied in sequences Eddy, 2011 http://hmmer.janelia.org/
alignments
BLASTX Basic local alignment of translated sequences Altschul et al., 1997 http://blast.ncbi.nlm.nih.gov/
blast/Blast.cgi?PROGRAM=
blastx&PAGE_TYPE=
BlastSearch&LINK_LOC=
blasthome
MetaORFA Assembly of peptides obtained from predicted Ye and Tang, 2008 NA
ORFs
MinPath Reconstruction of pathways from protein family Ye and Doak, 2009 http://omics.informatics.indiana.
predictions edu/MinPath/
MetaPath Identi cation of metabolic pathways differentiajl Liu and Pop, 2011 http://metapath.cbcb.umd.edu/
abundant among metagenomic samples
GhostKOALA KEGG's internal annotator of metagenomes by NP http://www.kegg.jp/ghostkoala/
k-number assignment by GHOSTX searches
against a non-redundant database of KEGG genes
RAMMCAP Metagenomic functional annotation and data Li, 2009 http://weizhong-lab.ucsd.edu/
clustering rammcap/cgi-bin/rammcap.cgi
ProViDE Analysis of viral diversity in metagenomic samples Ghosh et al., 2011 http://metagenomics.atc.tcs.
com/binning/ProViDE/
Phyloseq Tool-kit to row reads pre-processing, diversity McMurdie and Holmes, 2014 https://joey711.github.io/
analysis and graphics production. R, Bioconductor phyloseq/
package
MetagenomeSeq Analysis of differentially abundance of 166RNA Paulson et al., 2013 http://bioconductor.org/

ShotgunFunctionalizeR

Galaxy portal

MG-RAST

IMG/M

gene in metapro ling data. R, Bioconductor
package

Metagenomic functional comparisoat level of
individual genes (COG and EC numbers) and
complete pathways. R, Bioconductor package

Web repository of computational tools that ca be
run without informatic expertise. Graphical interface
and free service

Taxonomic and functional annotation, comparative
metagenomics. Graphical interface, web portal, and
free service

Functional annotation, phylogenetic distribution of
genes and comparative metagenomics. Graphical
interface, web portal, and free service

Kristiansson et al., 2009

Goecks et al., 2010

Meyer et al., 2008

Markowitz et al., 2012

packages/release/bioc/html/
metagenomeSed.html
http://shotgun.math.chalmers.
se/

https://usegalaxy.org/

http://metagenomics.anl.gov/

https://img.jgi.doe.gov/cgi-
bin/m/main.cgi

NP, Not published in an indexed Journal; NA, Not web site availahle
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PICRUSt uses an evolutionary modeling to generate functionaequences. Binning algorithms use di erent strategies tdlget
predictions from ribosomal (16S rRNA) genes databases, whidhxonomic assignment: (a) sequence composition classonati
allows to obtain a general vision of microbial functions inor (b) sequence alignment against references.

a microbiome. However, it only works adequately for those The rst one is based on k-mer frequencies methods, which
environments where the results have large numbers of osgasii  uses short words (k-mers) to represent a vector-like seqgienc
with annotated reference genomes available. Finally, BEERs and then to obtain the similarity among all words in the query
only designed to analyse prokaryotes, ignoring a large amaiun This representation can be considered as a “genomic sigriature

metabolic features performed by eukaryotes. and was widely used bigarlin and Burge (1995}0 explore
evolutionary conservation among species. Examples of s@twar
Shotgun Metagenomics that perform sequence classi cation by composition are TETRA

As mentioned, after deciphering the microbial diversity of a(T€€ling et al., 20Q4PhylophytiaSicHardy et al., 2007 and
metagenome, it would be very convenient to understand itd/etaclusterTA(vang et al., 2004Table 2.

metabolic potential. This can be achieved by using a whole Other methods have more than one strategy to support the
metagenome approach where total DNA is obtained to preparg0Tect binning of sequences as in the case of MaxBin ¢t al.,
whole shotgun libraries. As discussed, the sequencingoptatf 2014 and Amphora2{vu and Scott, 2012which rely on nding
choice will be somehow inuenced by the computationalSingle copy marker genes, k-mer signatures, GC content, and
resources and available software to handle and process tR@verage information to perform contig and read binning.
sequencing outputTable 9. It should be noted that the impact I spite of the binning approach facilitating taxonomic
and potential of shotgun metagenomics would be also re egted €1assi cation, itshould be considered that this strategyesome
taxonomy species level classi cation. The many microorgasi Problems with horizontally transferred sequences, wherege
obtained from whole metagenome shotgun sequencing wiffM @n organism appear in another. This could lead to an

probably deliver new genes with novel functions. aggravated misclassi cation if it occurs between non-tdbsd
organisms $harpton, 2014
Assessment of Taxonomy Based on Markers However, other methods based on reference read alignment

Theoretically, when a whole metagenome shotgun sequencir@je based on Burrows—Wheeler Transform indexes like BWA (
approach is performed, we can obtain a representation of afind Durbin, 2009 or Bowtie (.angmead and Salzberg, 2012
the genomes in the sample. This permit us not only to chooséhese fast and accurate alignment methods can assess species
from a wide range of phylogenetic markers in order to performrichness and abundance in metagenomes by mapping reads
taxonomic annotation but also we can obtain the ribosomaHirectly to individual reference genomes or many concateda
markers or any other used in the amplicon sequencing approacB€nomes (pangenomes) or sequences. This last approach is used
A multithreading software option to extract ribosomal marke in the Genometa softwarédavenport and Tummler, 20)@and
genes from metagenomic sequences to conduct the taxonorrddlows us to obtain OTUs for metagenome samples by grouping
annotation is Parallel-met&( et al., 2014 The program collects genomic islands, operons, or orthologous genes present in
ribosomal sequences from short reads by using a Hidden Markdeference pangenomes. Furthermore, if long reads are bigila
Models (HMM)-based reconstruction algorithnbe Fonzo etal., then it is possible to do a taxonomic assignment by translating
2007. Then it maps the reconstructed sequences to di erent 16§1em and use all potential coding sequences to perform sesrche
gene databases using Megablast (http://www.ncbi.nimaoiti.g in annotated protein databases using local alignment tools,
blast/html/megablast.html). As discussed in the metagrgl .., BLAST. In addition, some programs like SORT-ltems
analysis section, taxonomical annotation could be improvedMonzoorul Haque et al., 2099Megan, or DiscribinateGhosh
by using more than one phylogenetic marker. Therefore, iret al., 201p(Table 2 can recover the lowest common ancestor
whole metagenome shotgun sequencing, we can use softw&k&A) of a certain sequence from BLAST resullts.
to search single copy marker genes in other databases. Two Finally, we should consider that the more information we éav
examples of programs using these approaches are MOCA®I supporting taxonomic or functional results, the more rélia
(Kultima et al., 201 which uses the RefMG databasgdcarelli ~ will be our conclusions. This is why it is always advisable to
et al., 200pconstituted by a collection of 40 single copy markeruse more than one approach to assess taxonomic or functional
genes, and AMPHORAWu and Eisen, 2008 which includes —annotation, if possible.
a database containing around 31 single copy universal marker
(Table 2. After the single copy marker identi cation, such Functional Metagenomics Analysis
pipelines perform an OTU multiple sequence alignment, distanc®econstruction of metabolic pathways from enzyme-coding
calculation, and clustering. Finally, the taxonomical atationis  genes is a relevant matter in the metagenome analysis. @ner
performed using reference genomes giving a species resolatio there are two options to perform functional annotation from
many cases. shotgun sequences, one is using sequencing reads directly an
another is by read assembly.
The Binning Strategy
Binning classi cation is a quick and handy method to predict Read assembly
taxonomical composition using the information containectie  Assembly is more e cient for genome reconstruction in low
reads. These could be performed using either reads or assdmbtomplex samples and when closely related species reference
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genomes are presentéeling and Glockner, 2012; Luo et al.,annotation method, despite being computationally demanding
2013. However, the task is hampered when the read coveragsd time consuming. Using algorithms like BLAST against
is low and when there is high frequency of polymorphisms andlatabases such as Swiss-Prot or NCBI-nr retrieve a list of
repetitive regions [Pe Filippo et al., 2002 Nowadays, there related hits with a certain annotation that can be used to mine
aread hocassemblers for metagenome readiale 2 such as taxonomical information as well. However, a limitation ofigh
IDBA-UD (Peng et al., 20)2and MetaVelvet lamiki et al., approach is the size and phylogenetic coverage of the database
2012. Both are based on de Bruijn graph construction methodgCarr and Borenstein, 20).4
and consider di erent coverage peaks, which are expected in a Searches in customized databases such as CAZY, dbCAN, or
community composed by several di erent organisnisipmas MetaBioMe are alternative to avoid time consuming and the use
etal., 201p of excessive computational resources in the annotation nége
An extension of this algorithm is the use of the so calledelated to a metabolic pathwayéeling and Glockner, 2012; Yang
“colored” de Brujin graphs. This computational implementatio et al., 201)i In any case, reducing computational workload is
can perform a genome assembly and variant calling at the sanuseful to remove redundant sequences using algorithms such
time (Igbal et al., 2012 An assembler that incorporates this as CD-HIT (Li and Godzik, 2006to make the ORF or read
technique is Ray genome assembler that presents a di ereannotation process more e cient.
implementation such as RayMeta fate novoassembly of Usually, when protein function assignment by homology
metagenomes and RayCommunities that calculates microbe not possible due to low sequence identity value%
abundance and taxonomical pro lingTable 2 (Boisvert et al., of identity), HMM searches Eddy, 201) can be used for
2012. interrogating protein functional domain pro les using datates
Some advantages of assembling metagenomes are: (1) Tike the Conserved Domain Database of NCBI, PFAM, or SEED.
possibility of analysing the genome context (i.e., operonsfpartfrom solving the remote homology problem, this approach
(2) Increasing the probability of complete genes and genomédsas helped us to nd the regional or functional domains in
reconstruction, arising the con dence of sequence annotgt proteins, in addition to the product annotation that sometise
(3) Analysis simpli cation by mapping long contigs instead of could be cryptic.
short reads Thomas et al., 2012; Luo et al., 2013; Segata et al., Homology-based or HMM strategies can deliver a great

2013. number of false negatives especially when using short reads
(Scholz et al., 2012; Yang et al., 201# is noteworthy that
Prediction of gene coding sequences for functional annotation, the longer the sequence, the enor

After metagenome assembly, gene prediction and annotatiomformation is provided, which makes the sequence search
are similar to the framework followed in whole genomeeasier Carr and Borenstein, 20)4The use of short reads to
characterization Yandell and Ence, 2012; Richardson andperform direct searches has low sensitivity and speci city for
Watson, 2013 For metagenomics, it is recommended to predicthomologous identi cation (Vommack et al., 2003 therefore,
genes using algorithms that consider di-codons frequencyg-value threshold should be adjusted in order to obtain catrec
preferential bias in codon usage, patterns in the use of staft a results Carr and Borenstein, 20)4
stop codons and, if possible, incorporates the information of Another option is sequence clustering using BLASTX
species-speci ¢ ribosome-binding sites patterns, Open Readin{@ltschul et al., 1997 This strategy allows us to search directly
Frame (ORF) length, and GC content of coding-sequentes ( from reads or contigs, since the program will perform all the
etal., 201B possible translations. This has been implementedYlsy and
To assess such tasks, some gene predictors have been desigred (2008)in the MetaORFA pipeline, where the translations
particularly for metagenomic contig ORFs callintable 2. For (ORFome) are used to search homologs in the databases
example, MetaGeneMarkzZ(iu et al., 201p or GlimmerMG (Table 2. However, this could be very ine cient if a large set of
(Kelley et al., 20)2uses ab initio gene identication by readsis being analyzed.
“heuristical model” methods and second-order Markov clgain A work ow summary for functional annotation could be as
for coding-sequence prediction training. follows: get the best possible metagenome assembly (highest
However, it is not always possible to get a good assemblj50, N90, and contig/scaold ave. length) to perform the
especially for complex metagenomes with a great number @RF prediction and then assign function to a set of translated
low abundance species. A workaround would be the use a&fequences by homology against well-curated databasestof bot
FragGeneScan tool, which predicts partial ORFs from shortseagbrotein and conserved domains. Finally, mine the functiomal a
of at least 60 bp lengthi_ho et al., 2010 taxonomical information obtained from the search resulésbd
With predicted genes, we can continue to analyse then the target sequences.
translations of such predictions and obtain a product and An alternative to avoid dealing with local software and

functional annotation. computational resources is web portals such as Galaxg¢ks
et al., 201)) MG-RAST (Meyer et al., 2008and IMG-M portal
Function assignment and databases (Markowitz et al., 2012 These web servers are dedicated to

Function assignment of predicted ORFs could be performegerform taxonomical and functional analysis of metagenowias
on either nucleotide or translated sequences. In both c¢asesgraphical user-friendly interfac&dble 2. Unfortunately, these
homology detection is probably the easiest and most frequemtortals sometimes are saturated and the analysis parameeers a
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not customizable. Finally, the internet bandwidth to trérsvery An option to deal the ORF prediction errors is to use the

large datasets could be a bottleneck for some users. rate of possible non-synonymous and synonymous substitstion
(kas/ks) as a criterion to select probable geneskalks value is

Metabolic pathway reconstruction close to 1, then it indicates that such sequence is not under

Pathway reconstruction of the metagenome data is one of theelective pressure, suggesting a low probability to code for a
annotation goals. The concept of metabolic pathway in micbbi real protein {fooseph et al.,, 2008To conrm a candidate
ecology should be understood as the ow of information thgbu for a novel gene, the appropriate strategy should includiea

di erent species. Therefore, the term “inter-organismic et novo secondary and tertiary structure predictions using tools
routes” or “meta-pathways” has been proposed for this kind ofike I-TASSER Yang et al., 2005 QUARK (Xu and Zhang,
analysisDe Filippo et al., 2002 2012, or RaptorX Kallberg et al., 20)Zand perform a protein

In order to perform a reliable metabolic reconstruction, ago  structure comparison using tools like STRARBIl(e et al., 201}
functional annotation should be achieved in the rst plac&i§  Nevertheless, this will reveal the protein tertiary struetbut not
has to be used to nd each gene in an appropriate metabolioecessarily its function. In fact, from more than six mifi® of
context, lling missing enzymes in pathways and nd optimal putative enzymes identi ed by 454-sequencing in metagenome
metabolic states to perform the best pathway reconstructiongrojects, only less than a few hundred proteins have a reliable
Examples of programs available are MinPaite (and Doak, functional annotation Guazzaroni et al.,, 20)J0Finally, the
2009 and MetaPathl(iu and Pop, 2010 Both use information best way to conrm novel genes or discover new functions
deposited in KEGGQgata et al., 199@nd MetaCycCaspietal., is through experimental procedures such as heterologous
2019 repositories (able 2. expression, biochemical characterization, and proteomics.

However, most of the metabolic information comes from Pseudogenes are also a problem in metagenome functional
model organisms, but not all the enzymes or pathways arannotation, and they could represent up to 35% in prokaryotic
conserved among all species or environments. That is why mogenomes I(iu et al., 200} To address this annotation
of the current platforms fail in metabolic reconstruction of challenge, there are databases like BactPep2B £t al., 2004
variant pathwaysde Crécy-Lagard, 20)and most are designed and Pseudogene.org for short sequences and pseudogenes of
to analyse single genomes. prokaryotic and eukaryotic organism&drro et al., 200) A

A web service implementation by KEGG for metagenomesearch in such databases before further analysis could bel usef
analysis is GhostKOALA (Kanehisa Laboratories; http://wwwto discard non-coding sequences.
kegg.jp/ghostkoala/). It relates taxonomic origin with ithe
respective functional annotation, and the user is able toalisze COMPARATIVE METAGENOMICS
metabolic pathways from di erent taxa in the same map.

Metabolic pathway reconstruction could be completed within either of the metapro ling or shotgun sequencing, the sgsci
information provided by the data context such as gene fumctio richness or OTUs pro ling could be contrasted among samples
interactions, synteny, and copy number of annotated genes toased on species diversity comparison (beta-diversity).
integrate the metabolic potential of consortium. Two types of beta-diversity indices, such as incidence tyde an

abundance type, could be used. The former, such as Jaccard and
Bottlenecks in functional annotation: The ORFans problem Sgrensen indices, treats the common and rare species equally a
There are some relevant issues to consider in the wholest compares the number of shared and unique taxa between
metagenome shotgun sequencing annotation. Protocolsdbasthe samples. The abundance-type index contemplates abundance
on sequence similarity searching assume that each read evill kimilarity, thereby treating individuals not species edyjadome
mapped to a homologous gene of some closely related speciesamples are the Morisita-type and Bray—Curtis dissimilarity
However, depending on the database quality and size, di ererihdices Chao et al., 2006Such indexes are a ected by sampling
results could be obtained. For example, if direct DNA seaselie  size. An excellent review of beta-diversity fundamentagsew
performed, then it is probable to get matches against intergendone by Tuomisto (2010) Alternatively, UniFrac is a method
regions or non-coding genes (as a tRNA). In addition, aligntse for comparing microbial communities through phylogenetic
could retrieve best hits from a sequence in a potentiallyadist distance information contained in marker genes as the 16S
genome Carr and Borenstein, 20)4a ecting the taxonomic ribosomal rRNA {ozupone and Knight, 2005This method has
annotation if the search results are used for this endeaver, ( been well accepted in metagenomics pipelines and implemented
MEGAN). in some R-Bioconductor packages such as phylosedg/urdie

In spite of the annotation method, it is known that and Holmes, 201)3and metagenomeSe&{ulson et al., 20).3
metagenomes will have around 50% of protein sequences wiffhe latter implemented a novel algorithm for normalizatios a
no annotation or unknown function (referred as ORFans). Thisalternative to rarefaction.
percentage increases when the species richness is high in theln metapro ling analysis, some modular pipelines such as
community. ORFans can be classi ed into three categoriés: (Mothur and QIIME are capable of analysing raw reads and
spurious genes produced by errors in the gene prediction; (erforming taxonomical annotation. In addition, they can
genes with homology at secondary or tertiary structurellewe  compute sample comparisons and the calculation of some
not at nucleotide sequence level, or (3) real new genes vath rindexes mentioned in the Section Concepts of Microbial
homology to other genes, hence with unknown functions. Diversity and Species Richness. In order to improve diversity
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estimation, a lot of specialized software have been developsdmple. The LSU or ITS regions are good alternatives to classify
(Table 2 like ProViDE, which is designed for viral diversity organisms at the species level with high accuracy. Ecddogist
estimation (Ghosh et al., 20)1 interested in analysing the eukaryotic fraction are using NGS
For whole metagenome shotgun projects, where genglatforms like the lon Torren PGM or the Illumina MiSeq
protein coding information is available, functional comptiva  sequencers, which generate 400 bp single reads or 300 by paire
metagenomics is possible. It is based on identifying di ei@nt end reads, respectivelyable 1). Both platforms deliver enough
feature abundance (pathways, subsystems, or functiones)ol yield to perform the analysis of LSU or ITS amplicons at a very
between two or more conditions following a statistical prdaeee  high depth (indahl and Kuske, 2013; Hugerth et al., 2014; Tonge
with some normalization stepRodriguez-Brito et al., 2006; etal., 201}
Pookhao et al., 20)5Some useful tools to perform robust Regarding the metabolic association of eukaryotic genes
comparative functional metagenomics are Parallel-meta anieh a certain pathway, it can be a greater challenge than
MEGAN. Other more specialized software are capable dfacterial annotation. Eukaryotic genomes are typically 06—1
returning graphical representations of metabolic abundancetimes larger than the average bacterial genome (about 3-5
and taxonomic correlations as heatmaps or PCA plots oMb) size, plus they can have dierent genome ploidy states.
communities cluster genes. Two examples that compards is worthy to mention that the eukaryotic genes contain
metabolic pathways are ShotgunFunctionalizeR, which useimatrons, which may have dierential splicing patterns under
binomial and hypergeometric test to perform comparisonsparticular environmental conditions, thereby increasiniget
(Kristiansson et al., 2009and MetaPath, a tool implemented amount of products (isoforms) with dierent functions to
in Perl that identies and compares dierentially abundant annotate. Moreover, high percentage of intergenic non-cgdin
pathways in metagenomeisi and Pop, 201)L sequences that are represented di erently in a shotgun sexpeen
metagenome can represent a problem if they were not assembled
correctly leaving them out of their gene context. A stratégy
THE NEGLECTED WORLD OF further characterize coding regions in a eukaryotic meteagee
EUKARYOTES IN METAGENOMICS is to isolate some MRNA to perform a metatranscriptomics
analysis. Enriched mRNA from eukaryotic organisms ét al.,
Eukaryotes play important roles in almost all ecological ech 2011; Keeling et al., 20)ldan bede novoassembled or mapped
in the earth; however, the study of eukaryotic domain is rost to related reference genomes in order to elucidate the fanst
biased toward animals, plants, and fungi, thereby resultiing from these transcripts.
a narrow view of the great eukaryotic diversity. Microscopic
eukaryotes (regularly named protists) are the real bulk o6mo CONCLUDING REMARKS
of the eukaryotic lineage8(irki, 2014. Microeukarya are poorly
studied, but it is estimated that around 10% percent of protrisHere, we have reviewed the evolution of Microbiology into
species are already described and were found in the oééam(  Metagenomics to describe exhaustively a microbial comnyunit
and Droop, 1996; Norton et al., 1996Meanwhile, a 1.2-10 in terms of taxonomic diversity and metabolic potential.
million species have been predicted as host-associated tarotidMetagenomics allows us to discover new genes and proteins or
from which only 6000 have been reportegi(ki, 2014. even the complete genomes of non-cultivable organisms in less
Studying these organisms by NGS techniques has beentime and with better accuracy than classical microbiology or
challenge because they are not well represented in the seguemolecular methods. However, there are no standard methods
databases. The lack of reference eukaryoticgenomesisgagi or universal tools that can answer all of our questions in
the di culty of their genome assembly and annotatio®(bert  metagenomics. In fact, the lack of standards reduces the
and Dupont, 201). In spite of the lack of information, it is reproducibility and comparison between similar projects, nnaki
important to remark the importance of microeukaryotes in the metagenomics a case by case study. It is noteworthy that each
environment. They are responsible for @&ing in the oceans, metagenome project has speci c requirements depending on its
and they are the principal organic matter degraders in soild, a experimental design, and hence, the sequencing technolud)y a
some of them are symbionts of other eukaryot@srfi, 2014. computational tools should be chosen carefully. In spite @ th
Diversity studies of the “eukaryotome” have been doneserendipity thatis presentin science, we have to bear in nfiat t
using 18S rRNA gene ampliconéir(dersen et al., 20)3and the experimental design is the most important part and should t
some programs include tools to analyse them such as Parallelach project objectives in order to reach them and answer the
meta and QIIME, which have an option for mapping readsbiological question behind the project.
against eukaryotic Silva small ribosomal subunit (SSU)lege. A metagenome usually represents a snapshot of a community
The SSU is commonly used for diversity analysis as universat a certain time when its DNA is obtained. As mentioned, a
phylogenetic marker for eukaryotic genes, but there areessugood experimental design is necessary to explore the complete
to reach a species classi cation level due to their littléatéon  population dynamics by combining di erent approaches like
that limits the taxonomical position, especially for somedun culture methods, DNA and RNA analysis, protein studies, and
and protists Echoch et al., 20).2 if possible, the metabolic prole. Consequently, integration
Nowadays, new strategies have been developed based on otbieiseveral tools to microbiology (such as molecular bioJogy
phylogenetic markers to evaluate the eukaryotic fractiorain genetics, bioinformatics, and statistics) is necessargswar the
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questions related to microbial diversity and ecology in eager the data deluge and how we can interpret them in a more
extent. integrative way that could re ect the biodiversity presemtour

In our opinion, the development of more bioinformatics tools world.
for metagenomics analysis is necessary, but the experiénce
scientists to manipulate such tools and interpret their resig KCKNOWLEDGMENTS
the key to a sensible biological conclusion. The bioinfaioga AE and AV are Ph.D. students from Programa de Doctorado
expertise is a necessity, as the sequencing platforms ae Ciencias Bioquimicas and Programa de Doctorado en
delivering a massive yield at a very low cost, increasing th@iencias Biomédicas Universidad Nacional Autbnoma de México
amount of information to analyse. Finally, the near future(UNAM) with scholarship from Consejo Nacional de Ciencia y
challenge will reside in the manipulation and analysis offTecnologia (México).
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